Quantifying Responses of Spectral Vegetation Indices to Dead Materials in Mixed Grasslands

نویسندگان

  • Xiaohui Yang
  • Xulin Guo
چکیده

Spectral vegetation indices have been the primary resources for characterizing grassland vegetation based on remotely sensed data. However, the use of spectral indices for vegetation characterization in grasslands has been challenged by the confounding effects from external factors, such as soil properties, dead materials, and shadowing of vegetation canopies. Dead materials refer to the dead component of vegetation, including fallen litter and standing dead grasses accumulated from previous years. The abundant dead materials have been presenting challenges to accurately estimate green vegetation using spectral vegetation indices (VIs) derived from remote sensing data in mixed grasslands. Therefore, a close investigation of the relationship between VIs and dead materials is needed. The identified relationships could provide better insight into not only using remote sensing data for quantitative estimation of dead materials, but also the improvement of green vegetation estimation in the mixed grassland that has a high proportion of dead materials. In this article, the spectral reflectance of dead materials and green vegetation mixtures and dead material cover were measured in mixed grasslands located in Grassland National Park (GNP), Saskatchewan, Canada. Nine VIs were derived from the measured spectral reflectance. The relationship between dead material cover and VIs was quantified using the regression model and sensitivity analysis. Results indicated that the relationship between dead material cover and VIs is a function of the amount of dead material cover. Weak positive relationship was found between VIs and dead materials where the cover was less than 50%, and a significant high negative relationship was OPEN ACCESS Remote Sens. 2014, 6 4290 evident when cover was greater than 50%. When the combined exponential and linear model was applied to fit the negative relationships, more than 90% variation in dead material cover could be explained by VIs. Sensitivity analysis was further applied to the developed models, indicating that sensitivities of all VIs were significant over the entire range of dead material cover except for the triangular vegetation index (TVI), which has insignificant sensitivity when dead material cover was greater than 94%. Among all VIs, the weighted difference vegetation index (WDVI) had the highest sensitivity to changes in dead material cover higher than 50%. The results from this study indicated that vegetation indices based on combination of reflectance in red and NIR bands can be used to estimate dead material cover that is greater than 50%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling up Semi-Arid Grassland Biochemical Content from the Leaf to the Canopy Level: Challenges and Opportunities

Remote sensing imagery is being used intensively to estimate the biochemical content of vegetation (e.g., chlorophyll, nitrogen, and lignin) at the leaf level. As a result of our need for vegetation biochemical information and our increasing ability to obtain canopy spectral data, a few techniques have been explored to scale leaf-level biochemical content to the canopy level for forests and cro...

متن کامل

Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra

The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field...

متن کامل

Evaluating different spectral indices in identification and preparation of soil salinity mapping of arid region of Iran

Soil salinity undergoes significant spatial and temporal variations; therefore, salinity mapping is difficult, expensive, and time consuming. However, researchers have mainly focused on arid soils (bare) and less attention has been paid to halophyte plants and their role as salinity indicators. Accordingly, this paper aimed to investigate the relationship between soil properties, such as electr...

متن کامل

Potential of Landsat-8 spectral indices to estimate forest biomass

Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...

متن کامل

Efficiency of Spectral Indices Derived from Landsat-8 Images of Maharloo Lake and Its Surrounding Rangelands

Maharloo Lake is one of the salty lakes located in the southeast of Fars province, Iran. Presence of salt domes has a significant role in its salinity. Magnesium-sodium chloride and sodium sulfate are dominant salts of the lake. Due to the drying up of lake, widespread lands surrounding the area are exposed to secondary salinity. It seems necessary to investigate the changes to find salinity le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014